Это три типа механизмов пропусков в данных — и от понимания того, какой из них у вас, зависит, как правильно обрабатывать пропущенные значения.
🔍MCAR (Missing Completely at Random) Пропуски появляются совершенно случайно — не зависят ни от наблюдаемых, ни от ненаблюдаемых переменных.
📌 Пример: датчик случайно перестал записывать температуру из-за сбоя связи. ✅ Что делать: удаление строк или простая импутация — допустимо, модель почти не искажается.
🔍MAR (Missing At Random) Пропуски зависят от других наблюдаемых признаков, но не от самого недостающего значения.
📌 Пример: доход клиента не указан, но это чаще бывает у молодых пользователей — и возраст у нас есть. ✅ Что делать: множественная импутация (Multiple Imputation), модели, учитывающие другие признаки, работают хорошо.
🔍MNAR (Missing Not At Random) Пропуски зависят от самого значения, которое пропущено. То есть в данных есть систематическая причина, скрытая внутри пропуска.
📌 Пример: люди с высоким доходом не указывают его в анкете — именно потому, что он высокий. ✅ Что делать: здесь простые методы не помогут. Часто требуется: — Моделировать механизм пропуска явно. — Включать индикаторы пропусков как отдельные признаки. — Использовать экспертные знания или специализированные байесовские подходы.
Это три типа механизмов пропусков в данных — и от понимания того, какой из них у вас, зависит, как правильно обрабатывать пропущенные значения.
🔍MCAR (Missing Completely at Random) Пропуски появляются совершенно случайно — не зависят ни от наблюдаемых, ни от ненаблюдаемых переменных.
📌 Пример: датчик случайно перестал записывать температуру из-за сбоя связи. ✅ Что делать: удаление строк или простая импутация — допустимо, модель почти не искажается.
🔍MAR (Missing At Random) Пропуски зависят от других наблюдаемых признаков, но не от самого недостающего значения.
📌 Пример: доход клиента не указан, но это чаще бывает у молодых пользователей — и возраст у нас есть. ✅ Что делать: множественная импутация (Multiple Imputation), модели, учитывающие другие признаки, работают хорошо.
🔍MNAR (Missing Not At Random) Пропуски зависят от самого значения, которое пропущено. То есть в данных есть систематическая причина, скрытая внутри пропуска.
📌 Пример: люди с высоким доходом не указывают его в анкете — именно потому, что он высокий. ✅ Что делать: здесь простые методы не помогут. Часто требуется: — Моделировать механизм пропуска явно. — Включать индикаторы пропусков как отдельные признаки. — Использовать экспертные знания или специализированные байесовские подходы.
Secret Chats are one of the service’s additional security features; it allows messages to be sent with client-to-client encryption. This setup means that, unlike regular messages, these secret messages can only be accessed from the device’s that initiated and accepted the chat. Additionally, Telegram notes that secret chats leave no trace on the company’s services and offer a self-destruct timer.
However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.
Библиотека собеса по Data Science | вопросы с собеседований from ye